Astronomy Picture of the Day for June 21 – WR 134 Ring Nebula

Discover the cosmos!Each day a different image or photograph of our fascinating universe is  featured, along with a brief explanation written by a professional astronomer.

2012 June 21

WR 134 Ring Nebula Image 

Credit & Copyright: Don Goldman  

Explanation: Made with narrow and broad band filters, this colorful cosmic snap shot covers a field of view about the size of the full Moon within the boundaries of the constellation Cygnus. It highlights the bright edge of a ring-like nebula traced by the glow of ionized hydrogen and oxygen gas. Embedded in the region’s interstellar clouds of gas and dust, the complex, glowing arcs are sections of bubbles or shells of material swept up by the wind from Wolf-Rayet star WR 134, brightest star near the center of the frame. Distance estimates put WR 134 about 6,000 light-years away, making the frame over 50 light-years across. Shedding their outer envelopes in powerful stellar winds, massive Wolf-Rayet stars have burned through their nuclear fuel at a prodigious rate and end this final phase of massive star evolution in a spectacular supernova explosion. The stellar winds and final supernovae enrich the interstellar material with heavy elements to be incorporated in future generations of stars.

NASA Image of the Day for Oct. 4th – Ring Holds a Delicate Flower

Ring Holds a Delicate Flower

NASA’s Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom. (A planetary nebula is a shell of material ejected from a dying star.) Located about 2,000 light years from Earth in the constellation Lyra, the Ring Nebula is also known as Messier Object 57 and NGC 6720. It is one of the best examples of a planetary nebula and a favorite target of amateur astronomers.

The “ring” is a thick cylinder of glowing gas and dust around the doomed star. As the star begins to run out of fuel, its core becomes smaller and hotter, boiling off its outer layers. Spitzer’s infrared array camera detected this material expelled from the withering star. Previous images of the Ring Nebula taken by visible-light telescopes usually showed just the inner glowing loop of gas around the star. The outer regions are especially prominent in this new image because Spitzer sees the infrared light from hydrogen molecules. The molecules emit the infrared light that they have absorbed ultraviolet radiation from the star or have been heated by the wind from the star.

Image credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA